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The motion of a slender body near a flat intcrface betwecn two immiscible fluids of 
different viscosities and densities is considered. The force distributions along a slender 
body are derived for the two cases when the instantaneous motion of the slender body 
is parallel to, and normal to, the interface. I n  some cases the slender body will rotate, 
the magnitude and direction of rotation being a function of the ratio of the two 
viscosities and the distance from the interface. For a narrow band of viscosity ratios 
the direction of rotation for a normally oriented slender body will change with 
distance from the interface. Two mechanisms for the interface-induced rotation are 
discussed. 

1. Introduction 
The motion of long slender bodies at' very small Reynolds number occurs in many 

different areas of science and industry. Often these problems involve the presence of 
a plane boundary or a boundary which, under appropriate assumptions, may be taken 
to be approximately flat ; for example a rigid plane wall, a free surface, or an interface 
between two immiscible fluids of different) viscosities and densities. 

Examples of slender bodies moving near these types of boundaries occur in the 
locomotion of micro-organisms, where the beating of long slender flagella or fields of 
hairlike cilia propel the organism through the surrounding fluid. In  muco-ciliary 
transport' in the lung, the beating of cilia transports mucus up the bronchial tubes. 
This system is often modelled as two separate layers of fluid - the watery lower serous 
layer, in which the cilia beat, and the more viscous upper mucous layer (see Blake 1975) 
to which foreign particles adhere and are thus removed from the lung. Other examples 
include polymer extrusion in the petrochemical industry, which involves slender fibres 
moving near a free surface, and also flotation processes where the behaviour of 
particles near the bubble free surface is important. 

In  elasticity theory, t'he fibre pull-out problem is similar to the previous examples 
(see Phan-Thien 1980). I n  this case, a rigid fibre is embedded in a semi-infinite elastic 
medium where one wishes to  calculate the force required for a given displacement 
of the fibre. At this st,age we wish to make a clear distinction between the boundary 
conditions for a flat free surface in elasticity (in which both the tangential and normal 
stress on the interface are zero) and in fluid mechanics (where the tangential stress 
and normal velocity are zero but there is a normal stress acting on the surface due 
to gravity or surface tension). We will be concerned with the latter case in this paper. 

There have been a number of recent studies of the motion of particles in the 
presence of rigid plane wall boundaries. Brenner (1962) and Katz, Blake & Paveri- 
Fontana (1975) (sce also Lighthill 1975) obtained expressions for the drag on a slender 
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body which were valid far from the wall and close to the wall respectively. It remained 
for de Mestre (1973) and de Mestre & Russel (1975) to provide continuity between 
the above two limiting cases. More recently, attention has been directed towards the 
behaviour ofparticles near interfaces. Lee, Chadwick & Leal (1979), Lee & Leal'(1980) 
and O'Neill & Ranger (1979) have investigated the motion of translating and rotating 
spheres in the presence of a flat interface that separates two semi-infinite immiscible 
fluids. Thus there is a need to investigate the motion of other types of particles near 
an interface, and in particular, in view of the wide range of possible applications 
mentioned above, to examine the motion of a slender body near this type of boundary. 

In  this paper we extend de Mestre's (1973) and de Mestre & Russel's (1975) analysis 
from the rigid plane wall boundary to that of a flat interface between two semi-infinite 
immiscible fluids of different viscosities and densities. We consider an axisymmetric 
slender body oriented parallel to the interface and moving (i) axially (in the direction 
of the axis of symmetry of the body), (ii) transversely (in a direction normal to the 
axis of symmetry but parallel to the interface), (iii) normal to the interface; and a 
slender body oriented perpendicular to the interface and moving (iv) axially (and 
normal to the interface), and (v) transversely. 

Using line distributions of stokeslets and higher-order singularities we obtain 
asymptotic expansions of the force distributions on the slender body for the above- 
mentioned cases. The perturbation parameter is 8 = [In (21/B0)]-1, where the length 
of the body is 21 and a lengthscale for the radius of the cross-section is R,, with R, < 1. 
From the force distributions we can directly calculate the drag on the body and, in 
the case of motion parallel to the interface the angular velocity of the body (where 
the presence of the interface induces the body to rotate about its centre) as a function 
of the distance from the interface and the ratio of viscosities of the two fluids. It 
appears that line distributions of singularities will not adequately model the flow 
around the ends of the body (although they are very effective in modelling the rest 
of the flow) and it is suggested that a distribution of stokeslets over the whole surface 
of the body be used for the investigation of end effects. 

In our theory we have assumed the interface to be perfectly flat, although in 
practice the motion of a slender body will distort the shape of the interface. However, 
we can find conditions under which the interface deformation is sufficiently small that 
it may be neglected. Assuming the deformation to be small, Aderogba & Blake (1978b) 
obtain expressions for a first-order approximation to the interface shape in the 
presence of a stokeslet, where the action of (i) a uniform interfacial tension (y) ,  and 
(ii) hydrostatic pressure due to a density difference p1 -p2 ,  balances the normal 
stresses across the interface due to the action of the stokeslet. Using these expressions 
and exploiting the approximately uniform nature of the force distributions, we obtain 
the following conditions (corresponding to (i) and (ii) above) for the flat interface 
approximation to be valid: 

Y 

Here H is the distance from the interface to the nearest point on the slender body, 
p1 is the viscosity of the fluid in which the body is immersed, U is the velocity of 
the body and g is the acceleration due to gravity. It is clear from (1) that the 
flat-interface approximation is justified (even for close approaches) when the 
interfacial tension y or the density difference p1-p2 between the two fluids is very 
large. 
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2. Slender-body theory 

A useful technique for solving problems involving Stokes flow around a body is 
to employ a distribution of singularities to represent the body. Past experience 
(Batchelor 1970) has shown us that for a slender body an approximate representation 
may be obtained from a line distribution of stokeslets along the axis of the body, This 
representation may be formulated from a surface integral solution of the Stokes 
equations by carrying out a Taylor-series expansion about the axis of the slender 
body, retaining only first-order terms (stokeslets). We shall not be concerned with 
such details here ; however, further details of this procedure may be found in Russel 
& Acrivos (1972) and Chwang & Wu (1975). Thus using a centreline stokeslet 
distribution, the velocity field around a slender body (of length 22) may be 
approximated by 

(2) u i ( X )  [, 4 ( s )  Qgj(X, 8) ds,  

where s measures distance along the centreline, F(x) is the distribution of force per 
unit length and Gi, is the Green function (which may be physically interpreted as 
the velocity field due to  a unit point force acting along thej th  coordinate axis). The 
accuracy of this representation may be improved by including higher-order 
singularities. 

Our theory considers the motion of a slender body in a semi-infinite fluid of 
viscosity p1 and density pl ,  above which lies a semi-infinite fluid of viscosity p, and 
density pz. The two fluids are separated by a flat interface, which we take to be the 
surface x3 = 0. On the interface we require the normal velocity to be zero and the 
tangential velocities and stresses t o  be continuous across the interface. I n  order to  
apply slender-body theory we need a Green function Ggi that  automatically satisfies 
these conditions. This Green function has been obtained by Aderogba & Blake (19784 

(i,j, k = 1,  ..., 3;  a = 1, ..., 2; x3 < 0 ) ,  

where h is the distance of the singularity from the interface, 8 = p2/pl  is the ratio 
of viscosities, and the coordinate vectors r and R are centred a t  the Singularity 
(x3 = -h) and its image point (x3 = h)  respectively. 

The unknown force distributionF(8) in (2) can be determined by imposing the no-slip 
boundary condition on the surface of the slender body, which we. assume is moving 
with a constant velocity U. Substitution of this condition into (2) yields a set of 
simultaneous Fredholm integral equations of the first kind for the components of F(s). 

The following analysis involves a slender body of length 21 and of circular 
cross-section (with radius ro ) .  We take the mid-point of the body to be a distance 
h from the interface. Two extreme orientations of the axis of the slender body are 
examined : 

(i) parallel to the interface (see figure 1 ( a ) ,  in which case (using cylindrical polar 
coordinates To, q5, x) 

r = ( x - s ,  ro(x) cos q5, r o ( x )  sin c$), 

R = ( x - s ,  ro(x) cos q5, To(%) sin q5-2h) 

on the surface of the body ; 
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Region 2 

Flat interface I' 

FIGURE 1. Illustration of the coordinate system for a slender body oriented 
(a) parallel, ( b )  perpendicular to the interface. 
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(ii) perpendicular to the interface (see figure 1 b ) ,  where 

r = (r0(x) cos q5,  ro(x) sin q5, z - s ) ,  

207 

R = (ro(x) cos q5, r,(x) sin q5,  z+s-2h)  

on the surface of the body. 
To solve for the force distribution F(x)  we take advantage of the slenderness of 

the body by expanding the integral equations to first order in R,/1 (and to first order 
in R,/h for parallel orientations), where R, is the maximum radius of the circular 
cross-section of the body (note that there is no restriction on the relative magnitude 
of h and 1 ) .  By averaging around the cross-section of the body, any remaining terms 
involving the polar angle q5 are conveniently eliminated. Formally, these terms could 
have been cancelled out [to O(Ro/l)]  by having originally included a distribution of 
potential source doublets along the axis of the body. The resulting integral equations 
are finally solved by making an asymptotic expansion for F of the form 

(4) 

where e = [In (2Z/R0)]-l. Clearly E is a small parameter when Ro/Z is small. I n  the rest 
of this section solutions for F to  0 ( e 2 )  will be presented for both parallel and 
perpendicular orientations and for motion of the slender body along the three 
coordinate axes. 

F(s) = E F ( ~ )  + e2F(') + . . . , 

2 .1 .  Parallel orientation - axial motion 
We consider the slender body translating with speed U,  along the x-axis (i.e. in the 
direction of the axis of symmetry of the body). De Mestre & Russel (1975) showed 
that the presence of a plane wall will induce the body to  rotate such that its leading 
end moves away from the wall. We will assume that an external couple is acting on 
the body preventing i t  from rotating. This couple will be evaluated in $3. The 
distribution of force F on the body correct to O(e2)  is given (in asymptotically correct 
form) by 

&(x)  = e2np1 U ,  G1(x; 0 )  +O(Z) ( 5 b )  

and the F, component vanishes like O(R,/l) .  
The effect of the interface is contained in the terms 

2h R- R ,  
1-x 
2h 

2 sinh-l - + 2 sinh-l - - - - __ El = - 
8+ 1 

G, = ?..!!-(L - '> + -h3(1- L) 
1+8 R- R ,  1+0 R3 R3, ' 

with RZ = ( 1 - ~ ) ~ + 4 h ~ ,  

R$ = ( 1 + ~ ) ~ + 4 h ~ ,  

In  an infinite fluid one finds that only the component of F in the direction of motion 
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of the body is required. The presence of the interface necessitates the inclusion of an 
additional distribution of stokeslets directed normal to the interface. This is to take 
account of the reaction of the interface to the normal stress on the fluid induced by 
the flow around the body. 

2.2. Parallel orientation - transverse motion 
In this case the slender body is translating in the direction of the y-axis with velocity 
U = (0, U,,O). The solution for F, correct to O(e2)  is 

We found that an additional distribution of stokeslets normal to the interface is not 
required here. This is because the normal force is acting over a lengthscale of R, and 
is therefore negligible. 

2.3. Parallel orientation - normal motion 

The slender body is moving in the z-direction - i.e. towards the interface with velocity 
U = (0, 0, U,) .  The force distribution is found to be 

F,(x)  = -np1 U , E ~ G ~ ( X ; B ) + O ( E ~ ) ,  (7b) 
where 

1-x l+x  l -x  l+x  
E, = sinh-’- + s i n h - ’ ~  + - + - 

2h 2h R- R ,  

with G, defined previously in (5 ) .  It was found that two stokeslet distributions were 
required - one in the direction of motion (FJ and another in the x-direction (Fl) ,  which 
represents the ‘squeezing ’ effect on the fluid caused by the body moving towards the 
interface and thus forcing fluid along the surface of the slender body. 

2.4. Perpendicular orientation - axial motion 

The slender body is oriented perpendicular to the interface and moving towards it 
with velocity U = (0, 0, U J .  The force distribution is represented by 

where 2h+l-z 8 gl(2-h) (hz-2h2+12) 
E, = 2 In B h - l - - z f l + B {  [ ( ~ - 2 h ) ~ - P ] ~  
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2.5. Perpendicular orientation - transverse motion 

We consider the slender body translating in the direction of the x-axis with velocity 
U = ( I J , ,  0, 0). By symmetry this is equivalent to the body moving in the y-direction. 
The force distribution is given by 

6 -  1 2 h + l - ~  6 4 l ( z - h )  (hz-2h2+12) where 
E -- +- 

- 6+ 11n2h-Z-z 1 + 6  [ ( ~ - 2 h ) ~ - Z ~ ] ~  

Note that in this case (as well as in $2.1) we have found it  convenient to nullify the 
interface-induced rotation by imposing an  external couple on the body. 

3. The interface-induced drag and angular velocity of a slender body 
The drag on a slender body in the presence of a flat interface can be calculated 

for the examples discussed in $2. This is achieved by integrating the force distributions 
over the length of the body, i.e. I 

D = j-, F(a) da. (10) 

The integration is most easily accomplished by transferring the interface effect terms 
of (5)-(9) to  the numerator (incurring an error of e3) .  Care must be taken to  ensure 
that terms of the form €El are o(1). 

The drag on the slender body correct to 0 ( c 2 )  is given by 

for axial motion, and 

for transverse motion, 

47rp1 Ul 
D =  

In (21/R0) + c* - $1 

8np, U1 
In (21/R0) + c* + 1 -41 

D =  

where c* is defined by 

This constant takes different values for different shaped bodies (e.g. for a cylinder 
c* = -0-81, for a prolate spheroid c* = -$). The interface effect terms (labelled I in 
( 1  1 ) and (12)) for the various orientations considered in this paper are 

I! = - 6+1 e - i ( ~ s i n h - 1 ~ - 3 ( 1 + ~ ) ' +  h 7) 
+- 

19 - (2 sinh-l k - 2 (1 + ;Ii+ 7) 
I!j = ___ e+ i 

e + i  

I! = 2 sinh-l-+ - 
h e + i  
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for parallel orientation, and 
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for perpendicular orientation. It is noted that for 8 = co the above results agree with 
de Mestre & Russel's (1975) calculations for a rigid plane boundary. 

The far-field limit of these expressions is obtained by letting Z/h tend to zero (i.e. 
the distance of the body from the interface is much greater than the length of the 
body). Then 1 

I! = -(-- 1 3  8 - -) 1 +o(;), h 2 0 + 1  8 + 1  

I: = -(----) 1 3  e 1 +o@. 
h 20+1 0+1 

(15c) 

Both the 0 = co and 0 = 0 cases agree with Brenner's (1962) results. 
An interesting feature of these equations is the relative magnitude of the drag on 

a slender body in the presence of a flat interface compared with that in an infinite 
fluid (where the drag coefficients can be obtained from (1 1 )  and (12) by setting Iequal 
to zero). This can be seen clearly in the far field (Z/h < 1) (where the effect of the 
interface is minimal) : the drag is greater than with an infinite fluid for all values of 
8 in the case of motion normal to the interface, but for transverse and longitudinal 
motion the drag is smaller for values of 8 near zero and greater for large values of 
8. The critical value of 0 where the drag is equal to the drag in an infinite fluid occurs 
at  8 = 8. This result is the same as that obtained by Lee et al. (1979) for the drag 
on a sphere in the presence of an interface. Thus for a sufficiently large distance from 
the interface, when calculating the effect of the interface on the drag, both the 
orientation and shape of a particle are unimportant. 

For close approaches to the interface (yo < h < I) the drag reduces to 

8Wl +o(;) 1 

2h w uy = 
ln-+c*+l-ln2-- 

Ro e+ 1 
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0: = 21 
479, cTl 1 0  +O(?), 

ln-+c*-ln2- -- 
Ro 4 e + i  

8VI  Ul 
21 0-1 1 0  

ln-+c*+l--ln2--- 
Ro 0+ 1 4 0 + 1  

D$ = 

Equations (16a-c) are in agreement with the results of Blake (1974 b )  for 0 = 00. For 
perpendicular orientations with h/l + 1 one end of the slender body is very close to 
the interface. A more accurate modelling of this case could be carried out using a 
surface distribution approach. 

Both the far-field and near-field approximations together with the drag on a 
slender body oriented parallel to  a rigid plane wall (0 = 00) and moving in the 
x-direction are plotted in figure 2 ( a ) .  The near-field expression asymptotes to the drag 
from below, whereas the far-field expression asymptotes from above. This is true for 
all values of 0 and also for the other cases considered here. The far-field expressions 
are seen to be quite accurate down to about one body length away (h/l  = 2) and so 
may prove to be very useful in resistive-force theory. 

In  figure 2 ( b )  we have plotted the drag on a slender body for each of the five cases 
considered here for 0 = 0 and 0 = 00. The interface effect on the drag for the slender 
body oriented perpendicular to the interface is less than that for the slender body 
oriented parallel to the interface (especially closer to the interface) because more of 
the body is further away from the interface. The most notable result is the rapid 
increase in drag as the end of the body gets within half a body length from the 
interface. 

It was pointed out in $ 2  that  an external couple needs to  be applied to a slender 
body moving in the x-direction to  prevent i t  from rotating. Alternatively we could 
have allowed the slender body to rotate and calculate the instantaneous angular 
velocity w by requiring the couple on the body about its centre to be zero. This 
requires us to  modify the force distributions given in ( 5 )  and (9) by adding 2np1 ewx 
to Fl and 47rp1ewx to F3 in ( 5 )  and adding -2mp1ewz to F3 in (9). The error in each 
case remains O(e3) .  Thus the interface-induced angular velocity of a slender body 
oriented parallel to the interface is 

and perpendicular to the interface it is 
(17) 

I 

In the 0 +  00 limit (i.e. as the viscosity of the upper fluid p2 + 00) the above 
expressions agree with dc Mestre & Russel's (1975) angular velocities or a slender body 
near a rigid plane wall (except for a factor o f t  in the wI1 case which resulted from 
an error in de Mestre & Russel's corresponding expression for Fa). 
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FIGURE 2. The drag on a slender body (RJE = 0001) (normalized with respect to the drag in an 
infinite fluid). (a) The body is oriented parallel to a rigid wall (8 = a) and is moving in the 2-direction. 
The dashed lines are the near- and far-field asymptotes. (b) A comparison of the effects of orientation 
and ratio of viscosity. The dashed lines represent parallel orientation and the solid lines 
perpendicular orientation. Unprimed numbers are for B .= a and primed for 8 = 0. The quantity 
H is given by h for parallel orientation and h-1 for perpendicular orientation. 
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0 1 1 I I I , I I 1 
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Ratio of viscosities 0 

FIGURE 3. The angular velocity of a slender body that is oriented parallel to the interface. ( a )  
Angular velocity ws. distance from interface. (b )  The critical distance from the interface for which 
w is a maximum ws. the ratio or viscosities of the two fluids. 

Far-field limits for these expressions are obtained by letting l l h  -P 0, i.e. 

2 1 1 2  wIl = -1 -- 9 ' { 1 + 8 48 (%) + A; (3'1 ' 

For parallel orientation, wII is always less than zero for all values of 8 and h (i.e. 
the leading end of the body rotates away from the interface). From an analysis of 
(19) or from figure 3 (a) it can be seen that the angular velocity of the slender body 
diminishes as the distance from the interface increases (since at a large distance from 
the interface the body will behave as if it  were in an infinite fluid). Close to the 
interface the angular velocity also tends to zero. Thus 101 attains a maximum for 
a given value of the distance from the interface h and the ratio of viscosities 8, as 
illustrated in figure 3 ( b ) .  

For parallel orientation wL tends to a finite limit as the slender body moves closer 
to the interface (i.e. as hll  -+ l ) ,  although the neglected end effects may be important 
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FIGURE 4. The angular velocity of a slender body that is oriented perpendicular to the interface. 
( a )  Angular velocity ws. distance from interface. The dashed line has been magnified to illustrate 
the changing of direction of rotation. ( b )  Critical values of distance from the interface and the ratio 
of viscosities of the two fluids for which the angular velocity is zero. 

- 

here. I n  the free-surface case (0 = 0) w < 0, while in the plane wall case (0 = C O )  

w > 0. Clearly for some intermediate value of 0 there exists a value of h for which 
there is no rotation of the slender body in this particular orientation. In  figure 4 (a ) ,  
the dimensionless angular velocity is plotted against distance from the interface for 
several values of 0, and in particular for 0 = 0.7, where the direction of rotation 
changes with hll. I n  figure 4 ( b ) ,  the ratio of viscosities as a function of h/l for which 
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w = 0 is illustrated. The range of 8 for which this change of direction of rotation occurs 
is very small, being between 8 and 41n2-2 ( x  0.773). This result suggests the 
possibility of a capture region near an interface with an appropriate value of 8. 

It should be emphasized that the case 8 = 1 (i.e. when the viscosities of the two 
fluids are equal) is not identical with that of a slender body translating in an infinite 
fluid since there is an implied distribution of normal stress on the surface x3 = 0. This 
situation is probably unrealistic in practice, although theoretically i t  could occur 
between two fluids of the same viscosity but a large density difference. 

4. Discussion 
The rotation of a particle induced by its movement parallel to a flat interface appears 

to derive from a combination of two different mechanisms. When the particle is a 
slender body one of these two types of rotation will be negligible, depending on 
whether the axis of the slender body is oriented perpendicular or parallel to the 
interface. 

When the slender body is oriented perpendicular to the interface the body rotates 
in response to a viscous-drag gradient along the slender body (the force/unit length 
on one part of the body will be different from that on another). We have seen in $ 3  
that for a free surface (8 = 0) the existence of a substantial slip velocity on the 
interface means that the viscous resistance will be smaller for those parts of the body 
closer to  the interface, and thus the body will rotate in a clockwise direction. The 
opposite will be true for a rigid plane wall (8 = co) owing to the absence of a slip 
velocity on the interface. We may also conclude from this explanation that the 
magnitude of the angular velocity will decrease as the distance of the slender body 
increases and that the direction of rotation might change for given values of h and 
8. (These conclusions are confirmed in figure 4 (a ) ,  ( b ) ,  although it  is difficult to predict 
the restricted range of values of 0 (z 0 6 W 7 7 )  for which wL is zero.) 

A completely different mechanism for interface-induced rotation operates for the 
slender body oriented parallel to  the flat interface, due primarily to the zero- 
normal-velocity condition on the interface. Thus the rotation will be in the same 
direction for all values of the viscosity of the upper fluid (i.e. ranging from the 
free-surface case 8 = 0 through to  the rigid boundary 8 = 00). As the slender body 
moves forward, fluid will be pushed outwards and away from the boundary a t  the 
front, whereas a t  the rear fluid will be pulled in towards the slender body. This implies 
an asymmetry in the fluid velocity field normal to the interface, which indicates either 
a couple acting on the slender body or a rotation such that the leading edge moves 
away from the interface. This explanation is consistent with figure 3 ( a )  since if the 
slender body is close to the interface the fluid flow in the region between the slender 
body and the flat interface will be almost unidirectional (i.e. the normal velocity will 
be very small) and thus the angular velocity will tend to  zero as h tends to  zero. 

The problem of a sphere moving parallel to  a flat interface was studied by Lee et 
al. (1979) (who assumed that the distance of the sphere from the interface was large) 
and Lee & Leal (1980) (whose solution was valid at all distances from the interface). 
These authors suggested that the interface-induced rotation of the sphere was due 
to the difference in velocity gradients above and below the sphere (this is the 
mechanism that causes the slender body oriented perpendicular to the interface to  
rotate). Our results indicate however that the second mechanism described above 
associated with 0 1 1 )  would also affect the rotation of a sphere. I n  the far field, (15), 
we note that for 8 = co (a rigid plane-wall boundary) the angular velocities wI1 and 
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o1 of the slender bodies are of opposite sign, whereas for 8 = 0 (a flat free-surface 
boundary) they are of the same sign. From these results we expect that for a sphere 
the contributions of these two angular velocities will cancel for 6 = 00, leaving a term 
O(l/h)4 and for B = 0 they will add together to give a term of O(l /h)2  as was obtained 
by Lee et al. (1979). Thus it appears that the interface-induced rotation of a body 
is made up of two separate rotation mechanisms, the combination of which depends 
on both the shape and the orientation of the body. 

We can use our results for a slender body, in particular figures 3(a)  and 4(a ) ,  to 
gain some further insight into the interface-induced rotation of a particle. If a particle 
is close to the interface the rotation will be derived from what we have called 
mechanism 1 (since WII is small) and the direction of rotation will be dependent on 
the ratio of viscosities of the two fluids (and there will exist some critical value of 
6 where the angular velocity changes sign). As the particle moves further from the 
interface, however, mechanism 2 will become more important (the contribution being 
in the opposite direction to that induced by mechanism 1 if 6 = 0) and the critical 
value of B will increase. This result was also obtained by Lee & Leal (1980) for a sphere. 

Using the results for a slender body oriented parallel or perpendicular to a flat 
interface we have been able to predict qualitatively some of the results of Lee & Leal 
(1980) for the motion of a sphere near an interface. These studies will contribute to 
a greater understanding of the motion of differently shaped particles near an 
interface, which in turn will assist studies in many different fields such as colloid 
mechanics and muco-ciliary transport where the movement of small bodies near 
boundaries is of fundamental importance. 

Part of this work was carried out (by G .  R. F.) while a student in the Department 
of Applied Mathematics at the Australian National University, Canberra. 
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